Files
n8n_Demo/n8n-n8n-1.109.2/packages/@n8n/nodes-langchain/nodes/chains/ChainRetrievalQA/ChainRetrievalQa.node.ts

243 lines
6.3 KiB
TypeScript
Raw Normal View History

2025-09-08 04:48:28 +08:00
import { NodeConnectionTypes, parseErrorMetadata, sleep } from 'n8n-workflow';
import {
type IExecuteFunctions,
type INodeExecutionData,
type INodeType,
type INodeTypeDescription,
} from 'n8n-workflow';
import { promptTypeOptions, textFromPreviousNode } from '@utils/descriptions';
import { getBatchingOptionFields, getTemplateNoticeField } from '@utils/sharedFields';
import { INPUT_TEMPLATE_KEY, LEGACY_INPUT_TEMPLATE_KEY, systemPromptOption } from './constants';
import { processItem } from './processItem';
export class ChainRetrievalQa implements INodeType {
description: INodeTypeDescription = {
displayName: 'Question and Answer Chain',
name: 'chainRetrievalQa',
icon: 'fa:link',
iconColor: 'black',
group: ['transform'],
version: [1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6],
description: 'Answer questions about retrieved documents',
defaults: {
name: 'Question and Answer Chain',
color: '#909298',
},
codex: {
alias: ['LangChain'],
categories: ['AI'],
subcategories: {
AI: ['Chains', 'Root Nodes'],
},
resources: {
primaryDocumentation: [
{
url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainretrievalqa/',
},
],
},
},
inputs: [
NodeConnectionTypes.Main,
{
displayName: 'Model',
maxConnections: 1,
type: NodeConnectionTypes.AiLanguageModel,
required: true,
},
{
displayName: 'Retriever',
maxConnections: 1,
type: NodeConnectionTypes.AiRetriever,
required: true,
},
],
outputs: [NodeConnectionTypes.Main],
credentials: [],
properties: [
getTemplateNoticeField(1960),
{
displayName: 'Query',
name: 'query',
type: 'string',
required: true,
default: '={{ $json.input }}',
displayOptions: {
show: {
'@version': [1],
},
},
},
{
displayName: 'Query',
name: 'query',
type: 'string',
required: true,
default: '={{ $json.chat_input }}',
displayOptions: {
show: {
'@version': [1.1],
},
},
},
{
displayName: 'Query',
name: 'query',
type: 'string',
required: true,
default: '={{ $json.chatInput }}',
displayOptions: {
show: {
'@version': [1.2],
},
},
},
{
...promptTypeOptions,
displayOptions: {
hide: {
'@version': [{ _cnd: { lte: 1.2 } }],
},
},
},
{
...textFromPreviousNode,
displayOptions: { show: { promptType: ['auto'], '@version': [{ _cnd: { gte: 1.4 } }] } },
},
{
displayName: 'Prompt (User Message)',
name: 'text',
type: 'string',
required: true,
default: '',
placeholder: 'e.g. Hello, how can you help me?',
typeOptions: {
rows: 2,
},
displayOptions: {
show: {
promptType: ['define'],
},
},
},
{
displayName: 'Options',
name: 'options',
type: 'collection',
default: {},
placeholder: 'Add Option',
options: [
{
...systemPromptOption,
description: `Template string used for the system prompt. This should include the variable \`{context}\` for the provided context. For text completion models, you should also include the variable \`{${LEGACY_INPUT_TEMPLATE_KEY}}\` for the users query.`,
displayOptions: {
show: {
'@version': [{ _cnd: { lt: 1.5 } }],
},
},
},
{
...systemPromptOption,
description: `Template string used for the system prompt. This should include the variable \`{context}\` for the provided context. For text completion models, you should also include the variable \`{${INPUT_TEMPLATE_KEY}}\` for the users query.`,
displayOptions: {
show: {
'@version': [{ _cnd: { gte: 1.5 } }],
},
},
},
getBatchingOptionFields({
show: {
'@version': [{ _cnd: { gte: 1.6 } }],
},
}),
],
},
],
};
async execute(this: IExecuteFunctions): Promise<INodeExecutionData[][]> {
this.logger.debug('Executing Retrieval QA Chain');
const items = this.getInputData();
const returnData: INodeExecutionData[] = [];
const batchSize = this.getNodeParameter('options.batching.batchSize', 0, 5) as number;
const delayBetweenBatches = this.getNodeParameter(
'options.batching.delayBetweenBatches',
0,
0,
) as number;
if (this.getNode().typeVersion >= 1.6 && batchSize >= 1) {
// Run in batches
for (let i = 0; i < items.length; i += batchSize) {
const batch = items.slice(i, i + batchSize);
const batchPromises = batch.map(async (_item, batchItemIndex) => {
return await processItem(this, i + batchItemIndex);
});
const batchResults = await Promise.allSettled(batchPromises);
batchResults.forEach((response, index) => {
if (response.status === 'rejected') {
const error = response.reason;
if (this.continueOnFail()) {
const metadata = parseErrorMetadata(error);
returnData.push({
json: { error: error.message },
pairedItem: { item: index },
metadata,
});
return;
} else {
throw error;
}
}
const output = response.value;
const answer = output.answer as string;
if (this.getNode().typeVersion >= 1.5) {
returnData.push({ json: { response: answer } });
} else {
// Legacy format for versions 1.4 and below is { text: string }
returnData.push({ json: { response: { text: answer } } });
}
});
// Add delay between batches if not the last batch
if (i + batchSize < items.length && delayBetweenBatches > 0) {
await sleep(delayBetweenBatches);
}
}
} else {
// Run for each item
for (let itemIndex = 0; itemIndex < items.length; itemIndex++) {
try {
const response = await processItem(this, itemIndex);
const answer = response.answer as string;
if (this.getNode().typeVersion >= 1.5) {
returnData.push({ json: { response: answer } });
} else {
// Legacy format for versions 1.4 and below is { text: string }
returnData.push({ json: { response: { text: answer } } });
}
} catch (error) {
if (this.continueOnFail()) {
const metadata = parseErrorMetadata(error);
returnData.push({
json: { error: error.message },
pairedItem: { item: itemIndex },
metadata,
});
continue;
}
throw error;
}
}
}
return [returnData];
}
}