2025-09-11 14:14:45 +08:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
|
|
|
|
|
|
import json
|
|
|
|
|
import os
|
|
|
|
|
|
|
|
|
|
def extract_position_data(position_names):
|
|
|
|
|
"""从JSON文件中提取指定岗位的数据"""
|
|
|
|
|
result = {}
|
|
|
|
|
|
|
|
|
|
# 读取所有part文件
|
|
|
|
|
for i in range(1, 4):
|
|
|
|
|
file_path = f'/Users/apple/Documents/cursor/教务系统/frontend/网页未导入数据/文旅产业/个人简历内容_part{i}.json'
|
|
|
|
|
try:
|
|
|
|
|
with open(file_path, 'r', encoding='utf-8') as f:
|
|
|
|
|
data = json.load(f)
|
|
|
|
|
for item in data:
|
|
|
|
|
position = item.get('❌岗位名称查询', '')
|
|
|
|
|
if position in position_names:
|
|
|
|
|
result[position] = item
|
|
|
|
|
print(f"找到: {position} in part{i}")
|
|
|
|
|
except Exception as e:
|
|
|
|
|
print(f"Error reading part{i}: {e}")
|
|
|
|
|
|
|
|
|
|
# 也读取主文件
|
|
|
|
|
main_file = '/Users/apple/Documents/cursor/教务系统/frontend/网页未导入数据/文旅产业/个人简历内容.json'
|
|
|
|
|
try:
|
|
|
|
|
with open(main_file, 'r', encoding='utf-8') as f:
|
|
|
|
|
data = json.load(f)
|
|
|
|
|
for item in data:
|
|
|
|
|
position = item.get('❌岗位名称查询', '')
|
|
|
|
|
if position in position_names and position not in result:
|
|
|
|
|
result[position] = item
|
|
|
|
|
print(f"找到: {position} in main file")
|
|
|
|
|
except Exception as e:
|
|
|
|
|
print(f"Error reading main file: {e}")
|
|
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
# 需要提取的岗位
|
|
|
|
|
positions_to_extract = [
|
|
|
|
|
'露营地运营专员',
|
|
|
|
|
'文创产品设计师', '文创产品策划师', '文创产品设计师助理',
|
|
|
|
|
'品牌策划运营专员', '品牌公关', '品牌推广专员',
|
2025-10-15 15:55:25 +08:00
|
|
|
'ip运营', 'ip运营总监助理', '品牌公关管培生'
|
2025-09-11 14:14:45 +08:00
|
|
|
]
|
|
|
|
|
|
|
|
|
|
# 提取数据
|
|
|
|
|
extracted_data = extract_position_data(positions_to_extract)
|
|
|
|
|
|
|
|
|
|
# 保存提取的数据
|
|
|
|
|
output_file = '/Users/apple/Documents/cursor/教务系统/frontend/extracted_resume_data.json'
|
|
|
|
|
with open(output_file, 'w', encoding='utf-8') as f:
|
|
|
|
|
json.dump(extracted_data, f, ensure_ascii=False, indent=2)
|
|
|
|
|
|
|
|
|
|
print(f"\n成功提取 {len(extracted_data)} 个岗位的数据")
|
|
|
|
|
print(f"已保存到: {output_file}")
|
|
|
|
|
|
|
|
|
|
# 显示缺失的岗位
|
|
|
|
|
missing = set(positions_to_extract) - set(extracted_data.keys())
|
|
|
|
|
if missing:
|
|
|
|
|
print(f"\n未找到的岗位: {missing}")
|