Files
online_sys/frontend_智能制造/test_data_transform.cjs
KQL a7242f0c69 Initial commit: 教务系统在线平台
- 包含4个产业方向的前端项目:智能开发、智能制造、大健康、财经商贸
- 已清理node_modules、.yoyo等大文件,项目大小从2.6GB优化至631MB
- 配置完善的.gitignore文件

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
2025-12-12 18:16:55 +08:00

85 lines
3.2 KiB
JavaScript
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

const fs = require('fs');
// 读取数据
const companyJobsNewData = JSON.parse(fs.readFileSync('./src/data/companyJobsNew.json', 'utf8'));
const companyImagesData = JSON.parse(fs.readFileSync('./网页未导入数据/智能制造产业/智能制造_内推岗位企业图片.json', 'utf8'));
const interviewStatusData = JSON.parse(fs.readFileSync('./src/data/interviewStatus.json', 'utf8'));
console.log("=== 数据转换测试 ===\n");
// 创建图片映射复制mockData.js中的逻辑
const companyImagesMap = {};
companyImagesData.forEach(item => {
const positionName = item["内推岗位名称"];
const imageLinks = item["BOSS照片链接"];
if (positionName && imageLinks) {
companyImagesMap[positionName] = imageLinks.split(',').map(url => url.trim());
}
});
console.log("图片映射创建完成,共", Object.keys(companyImagesMap).length, "个岗位\n");
// 获取面试状态中的岗位
const interviewedPositions = interviewStatusData.map(status => status["查询岗位名称"]);
console.log("面试状态岗位数:", interviewedPositions.length);
console.log("面试状态岗位:", interviewedPositions.join(", "));
// 模拟transformCompanyJobs函数
const today = new Date();
today.setHours(0, 0, 0, 0);
const transformedJobs = companyJobsNewData
.filter(job => !interviewedPositions.includes(job["内推岗位名称"]))
.map((job, index) => {
const positionName = job["内推岗位名称"];
const companyImages = companyImagesMap[positionName] || [];
return {
id: index + 1,
position: positionName,
hasImages: companyImages.length > 0,
imageCount: companyImages.length,
details: {
companyImages: companyImages
}
};
});
console.log("\n=== 转换后的岗位数据 ===");
console.log("过滤后岗位总数:", transformedJobs.length);
console.log("有图片的岗位数:", transformedJobs.filter(j => j.hasImages).length);
console.log("\n=== 前10个转换后的岗位 ===");
transformedJobs.slice(0, 10).forEach((job, idx) => {
const mark = job.hasImages ? "✅" : "❌";
console.log(mark, (idx+1) + ".", job.position,
job.hasImages ? `(${job.imageCount}张)` : "(无图片)");
});
console.log("\n=== 有图片的岗位详细信息 ===");
const jobsWithImages = transformedJobs.filter(j => j.hasImages);
jobsWithImages.forEach((job, idx) => {
console.log(`${idx+1}. ${job.position}: ${job.imageCount}张图片`);
if (job.details.companyImages.length > 0) {
console.log(` 第一张: ${job.details.companyImages[0].substring(0, 80)}...`);
}
});
console.log("\n=== 被过滤掉的面试状态岗位中有图片的 ===");
const filteredJobsWithImages = companyJobsNewData
.filter(job => interviewedPositions.includes(job["内推岗位名称"]))
.filter(job => companyImagesMap[job["内推岗位名称"]])
.map(job => ({
position: job["内推岗位名称"],
imageCount: companyImagesMap[job["内推岗位名称"]].length
}));
if (filteredJobsWithImages.length > 0) {
console.log("注意:以下岗位有图片但因为在面试状态中被过滤:");
filteredJobsWithImages.forEach((job, idx) => {
console.log(` ${idx+1}. ${job.position} (${job.imageCount}张图片)`);
});
} else {
console.log("无");
}