Files
online_sys/frontend_大健康/fix_remove_modified.py

162 lines
5.2 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import re
from datetime import datetime
def create_backup(file_path):
"""创建备份文件"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
backup_path = f"{file_path}.backup_{timestamp}"
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
with open(backup_path, 'w', encoding='utf-8') as f:
f.write(content)
print(f"已创建备份: {backup_path}")
return backup_path
def remove_modified_fields():
"""删除没有真实修改版的岗位的modified字段保持content对象完整"""
# 有真实修改版的岗位列表这些要保留modified
real_modified_positions = {
"会展策划师",
"会展执行助理",
"会展讲解员",
"活动策划师",
"活动执行",
"漫展策划师",
"旅游规划师",
"旅游计调专员",
"景区运营专员",
"文旅运营总监助理"
}
file_path = 'src/mocks/resumeInterviewMock.js'
# 创建备份
create_backup(file_path)
# 读取文件内容
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
modified_count = 0
kept_count = 0
# 更精确的正则表达式匹配content对象中的modified字段
# 这个模式会匹配从position到content对象找到modified字段并删除它
def process_position(match):
nonlocal modified_count, kept_count
full_match = match.group(0)
position_name = match.group(1)
# 如果是有真实修改版的岗位,保持不变
if position_name in real_modified_positions:
kept_count += 1
print(f"✓ 保留 {position_name} 的modified字段")
return full_match
# 删除modified字段但保持content对象的结构
# 查找并删除 ,modified: `...` 部分
# 使用非贪婪匹配来找到modified字段
pattern = r',\s*modified:\s*`[^`]*`'
new_content = re.sub(pattern, '', full_match, flags=re.DOTALL)
modified_count += 1
print(f"✗ 删除 {position_name} 的modified字段")
return new_content
# 匹配从position到整个content对象的模式
# 使用更精确的模式来确保不会破坏content对象的结构
pattern = r'position:\s*"([^"]+)"[^}]*?content:\s*\{[^}]*?original:\s*`[^`]*?`(?:,\s*modified:\s*`[^`]*?`)?\s*\}'
# 执行替换
new_content = re.sub(pattern, process_position, content, flags=re.DOTALL)
# 保存文件
with open(file_path, 'w', encoding='utf-8') as f:
f.write(new_content)
print(f"\n处理完成!")
print(f"- 删除了 {modified_count} 个岗位的modified字段")
print(f"- 保留了 {kept_count} 个岗位的modified字段")
def verify_results():
"""验证处理结果"""
file_path = 'src/mocks/resumeInterviewMock.js'
# 首先检查文件语法
import subprocess
result = subprocess.run(['node', '-c', file_path], capture_output=True, text=True)
if result.returncode != 0:
print(f"⚠️ 文件语法错误: {result.stderr}")
return False
else:
print("✓ 文件语法正确")
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# 统计所有有modified字段的岗位
pattern = r'position:\s*"([^"]+)"[^}]*?modified:\s*`'
matches = re.findall(pattern, content, re.DOTALL)
print("\n验证结果:")
print("=" * 50)
print(f"还有modified字段的岗位{len(set(matches))}个):")
unique_positions = set(matches)
for position in sorted(unique_positions):
print(f" - {position}")
# 期望的岗位列表
expected = {
"会展策划师",
"会展执行助理",
"会展讲解员",
"活动策划师",
"活动执行",
"漫展策划师",
"旅游规划师",
"旅游计调专员",
"景区运营专员",
"文旅运营总监助理"
}
# 检查是否匹配
if unique_positions == expected:
print("\n✓ 完美所有岗位的modified字段都处理正确")
# 额外检查确认所有岗位的original字段还在
original_pattern = r'position:\s*"([^"]+)"[^}]*?original:\s*`'
original_matches = re.findall(original_pattern, content, re.DOTALL)
print(f"\n共有 {len(set(original_matches))} 个岗位保留了original字段")
return True
else:
missing = expected - unique_positions
extra = unique_positions - expected
if missing:
print(f"\n⚠️ 缺少modified的岗位{missing}")
if extra:
print(f"\n⚠️ 不应该有modified的岗位{extra}")
return False
def main():
print("开始修复删除没有真实修改版的岗位的modified字段...")
print("=" * 50)
# 删除没有真实修改版的岗位的modified字段
remove_modified_fields()
# 验证结果
if verify_results():
print("\n✅ 修复成功!")
else:
print("\n❌ 修复可能有问题,请检查")
if __name__ == "__main__":
main()