1 line
5.6 KiB
JSON
1 line
5.6 KiB
JSON
|
|
{"ast":null,"code":"import { noop } from '../noop.mjs';\n\n/*\n Bezier function generator\n This has been modified from Gaëtan Renaudeau's BezierEasing\n https://github.com/gre/bezier-easing/blob/master/src/index.js\n https://github.com/gre/bezier-easing/blob/master/LICENSE\n \n I've removed the newtonRaphsonIterate algo because in benchmarking it\n wasn't noticeably faster than binarySubdivision, indeed removing it\n usually improved times, depending on the curve.\n I also removed the lookup table, as for the added bundle size and loop we're\n only cutting ~4 or so subdivision iterations. I bumped the max iterations up\n to 12 to compensate and this still tended to be faster for no perceivable\n loss in accuracy.\n Usage\n const easeOut = cubicBezier(.17,.67,.83,.67);\n const x = easeOut(0.5); // returns 0.627...\n*/\n// Returns x(t) given t, x1, and x2, or y(t) given t, y1, and y2.\nconst calcBezier = (t, a1, a2) => (((1.0 - 3.0 * a2 + 3.0 * a1) * t + (3.0 * a2 - 6.0 * a1)) * t + 3.0 * a1) * t;\nconst subdivisionPrecision = 0.0000001;\nconst subdivisionMaxIterations = 12;\nfunction binarySubdivide(x, lowerBound, upperBound, mX1, mX2) {\n let currentX;\n let currentT;\n let i = 0;\n do {\n currentT = lowerBound + (upperBound - lowerBound) / 2.0;\n currentX = calcBezier(currentT, mX1, mX2) - x;\n if (currentX > 0.0) {\n upperBound = currentT;\n } else {\n lowerBound = currentT;\n }\n } while (Math.abs(currentX) > subdivisionPrecision && ++i < subdivisionMaxIterations);\n return currentT;\n}\nfunction cubicBezier(mX1, mY1, mX2, mY2) {\n // If this is a linear gradient, return linear easing\n if (mX1 === mY1 && mX2 === mY2) return noop;\n const getTForX = aX => binarySubdivide(aX, 0, 1, mX1, mX2);\n // If animation is at start/end, return t without easing\n return t => t === 0 || t === 1 ? t : calcBezier(getTForX(t), mY1, mY2);\n}\nexport { cubicBezier };","map":{"version":3,"names":["noop","calcBezier","t","a1","a2","subdivisionPrecision","subdivisionMaxIterations","binarySubdivide","x","lowerBound","upperBound","mX1","mX2","currentX","currentT","i","Math","abs","cubicBezier","mY1","mY2","getTForX","aX"],"sources":["/Users/apple/Documents/cursor/Web课件/AI课/education_web_多Agent协作系统/node_modules/motion-utils/dist/es/easing/cubic-bezier.mjs"],"sourcesContent":["import { noop } from '../noop.mjs';\n\n/*\n Bezier function generator\n This has been modified from Gaëtan Renaudeau's BezierEasing\n https://github.com/gre/bezier-easing/blob/master/src/index.js\n https://github.com/gre/bezier-easing/blob/master/LICENSE\n \n I've removed the newtonRaphsonIterate algo because in benchmarking it\n wasn't noticeably faster than binarySubdivision, indeed removing it\n usually improved times, depending on the curve.\n I also removed the lookup table, as for the added bundle size and loop we're\n only cutting ~4 or so subdivision iterations. I bumped the max iterations up\n to 12 to compensate and this still tended to be faster for no perceivable\n loss in accuracy.\n Usage\n const easeOut = cubicBezier(.17,.67,.83,.67);\n const x = easeOut(0.5); // returns 0.627...\n*/\n// Returns x(t) given t, x1, and x2, or y(t) given t, y1, and y2.\nconst calcBezier = (t, a1, a2) => (((1.0 - 3.0 * a2 + 3.0 * a1) * t + (3.0 * a2 - 6.0 * a1)) * t + 3.0 * a1) *\n t;\nconst subdivisionPrecision = 0.0000001;\nconst subdivisionMaxIterations = 12;\nfunction binarySubdivide(x, lowerBound, upperBound, mX1, mX2) {\n let currentX;\n let currentT;\n let i = 0;\n do {\n currentT = lowerBound + (upperBound - lowerBound) / 2.0;\n currentX = calcBezier(currentT, mX1, mX2) - x;\n if (currentX > 0.0) {\n upperBound = currentT;\n }\n else {\n lowerBound = currentT;\n }\n } while (Math.abs(currentX) > subdivisionPrecision &&\n ++i < subdivisionMaxIterations);\n return currentT;\n}\nfunction cubicBezier(mX1, mY1, mX2, mY2) {\n // If this is a linear gradient, return linear easing\n if (
|