主要内容: - 包含12个产业的完整教务系统前端代码 - 智能启动脚本 (start-industry.sh) - 可视化产业导航页面 (index.html) - 项目文档 (README.md) 优化内容: - 删除所有node_modules和.yoyo文件夹,从7.5GB减少到2.7GB - 添加.gitignore文件避免上传不必要的文件 - 自动依赖管理和智能启动系统 产业列表: 1. 文旅产业 (5150) 2. 智能制造 (5151) 3. 智能开发 (5152) 4. 财经商贸 (5153) 5. 视觉设计 (5154) 6. 交通物流 (5155) 7. 大健康 (5156) 8. 土木水利 (5157) 9. 食品产业 (5158) 10. 化工产业 (5159) 11. 能源产业 (5160) 12. 环保产业 (5161) 🤖 Generated with Claude Code Co-Authored-By: Claude <noreply@anthropic.com>
98 lines
3.4 KiB
Python
98 lines
3.4 KiB
Python
#!/usr/bin/env python3
|
||
# -*- coding: utf-8 -*-
|
||
"""
|
||
替换面试状态数据
|
||
将能源岗位面试状态数据转换为现有格式并替换到interviewStatus.json
|
||
"""
|
||
|
||
import json
|
||
from datetime import datetime
|
||
|
||
def transform_energy_interview_data(energy_data):
|
||
"""将能源面试状态数据转换为现有格式"""
|
||
transformed = []
|
||
|
||
for item in energy_data:
|
||
# 构建阶段日期字符串
|
||
stage_prefix = ""
|
||
if "面试结果" in item["岗位内推流程"]:
|
||
stage_prefix = "面试结果"
|
||
elif "Offer" in item["岗位内推流程"]:
|
||
stage_prefix = "收到Offer"
|
||
elif "HR评估" in item["岗位内推流程"]:
|
||
stage_prefix = "HR评估"
|
||
elif "面试" in item["岗位内推流程"]:
|
||
stage_prefix = "面试日期"
|
||
else:
|
||
stage_prefix = item["岗位内推流程"]
|
||
|
||
# 格式化时间 (去掉时分秒部分)
|
||
time_str = item["流程时间"].split(" ")[0] if " " in item["流程时间"] else item["流程时间"]
|
||
|
||
# 构建阶段日期
|
||
stage_date = f"{stage_prefix}:{time_str}"
|
||
|
||
# 构建面试状态
|
||
interview_status = item["内容"]
|
||
|
||
transformed_item = {
|
||
"查询岗位名称": item["查询岗位名称"],
|
||
"阶段日期": stage_date,
|
||
"面试状态": interview_status
|
||
}
|
||
|
||
transformed.append(transformed_item)
|
||
|
||
return transformed
|
||
|
||
def main():
|
||
# 读取能源岗位面试状态数据
|
||
energy_data_path = '网页未导入数据/能源产业/能源岗位面试状态.json'
|
||
target_path = 'src/data/interviewStatus.json'
|
||
|
||
# 创建备份
|
||
backup_path = f'{target_path}.backup_{datetime.now().strftime("%Y%m%d_%H%M%S")}'
|
||
|
||
print(f"读取能源面试状态数据: {energy_data_path}")
|
||
with open(energy_data_path, 'r', encoding='utf-8') as f:
|
||
energy_interview_data = json.load(f)
|
||
|
||
print(f"共读取到 {len(energy_interview_data)} 个面试状态")
|
||
|
||
# 如果目标文件存在,先备份
|
||
try:
|
||
print(f"备份原文件到: {backup_path}")
|
||
with open(target_path, 'r', encoding='utf-8') as f:
|
||
original_data = f.read()
|
||
with open(backup_path, 'w', encoding='utf-8') as f:
|
||
f.write(original_data)
|
||
except FileNotFoundError:
|
||
print("原文件不存在,创建新文件")
|
||
|
||
# 转换数据格式
|
||
transformed_data = transform_energy_interview_data(energy_interview_data)
|
||
|
||
# 写入新数据
|
||
print(f"写入 {len(transformed_data)} 个面试状态到: {target_path}")
|
||
with open(target_path, 'w', encoding='utf-8') as f:
|
||
json.dump(transformed_data, f, ensure_ascii=False, indent=2)
|
||
|
||
print("✅ 数据替换完成!")
|
||
print(f"- 原文件已备份: {backup_path}")
|
||
print(f"- 新数据已写入: {target_path}")
|
||
print(f"- 共替换 {len(transformed_data)} 个面试状态")
|
||
|
||
# 验证数据
|
||
with open(target_path, 'r', encoding='utf-8') as f:
|
||
verify_data = json.load(f)
|
||
print(f"✅ 验证: 文件包含 {len(verify_data)} 个面试状态")
|
||
|
||
# 显示前3个面试状态作为验证
|
||
print("\n前3个面试状态:")
|
||
for i, status in enumerate(verify_data[:3]):
|
||
print(f" {i+1}. {status['查询岗位名称']}")
|
||
print(f" 阶段: {status['阶段日期']}")
|
||
print(f" 状态: {status['面试状态']}")
|
||
|
||
if __name__ == "__main__":
|
||
main() |