主要内容: - 包含12个产业的完整教务系统前端代码 - 智能启动脚本 (start-industry.sh) - 可视化产业导航页面 (index.html) - 项目文档 (README.md) 优化内容: - 删除所有node_modules和.yoyo文件夹,从7.5GB减少到2.7GB - 添加.gitignore文件避免上传不必要的文件 - 自动依赖管理和智能启动系统 产业列表: 1. 文旅产业 (5150) 2. 智能制造 (5151) 3. 智能开发 (5152) 4. 财经商贸 (5153) 5. 视觉设计 (5154) 6. 交通物流 (5155) 7. 大健康 (5156) 8. 土木水利 (5157) 9. 食品产业 (5158) 10. 化工产业 (5159) 11. 能源产业 (5160) 12. 环保产业 (5161) 🤖 Generated with Claude Code Co-Authored-By: Claude <noreply@anthropic.com>
176 lines
6.1 KiB
Python
176 lines
6.1 KiB
Python
#!/usr/bin/env python3
|
||
# -*- coding: utf-8 -*-
|
||
|
||
import json
|
||
import re
|
||
import datetime
|
||
import shutil
|
||
|
||
def parse_interview_questions(content):
|
||
"""解析面试题内容"""
|
||
questions = []
|
||
lines = content.split('\n')
|
||
|
||
current_question = None
|
||
current_answer = []
|
||
question_id = 1
|
||
in_answer = False
|
||
|
||
for line in lines:
|
||
line = line.strip()
|
||
|
||
# 检查是否是问题行
|
||
question_match = re.match(r'^(\d+)\.[\s ]+(.+)$', line)
|
||
if question_match:
|
||
# 保存上一个问题
|
||
if current_question and current_answer:
|
||
answer_text = '\n'.join(current_answer).strip()
|
||
if answer_text:
|
||
current_question['answer'] = answer_text
|
||
questions.append(current_question)
|
||
current_answer = []
|
||
|
||
# 创建新问题
|
||
question_text = question_match.group(2).rstrip('??')
|
||
current_question = {
|
||
'id': f'q{question_id}',
|
||
'question': question_text,
|
||
'answer': ''
|
||
}
|
||
question_id += 1
|
||
in_answer = False
|
||
|
||
# 检查是否是答案开始
|
||
elif '示例答案' in line or '答案:' in line or '答案:' in line:
|
||
in_answer = True
|
||
answer_in_line = re.sub(r'^.*?(示例答案|答案)[::]?\s*', '', line).strip()
|
||
if answer_in_line:
|
||
current_answer.append(answer_in_line)
|
||
|
||
# 收集答案内容
|
||
elif in_answer and current_question and line:
|
||
if not line.startswith('#'):
|
||
current_answer.append(line)
|
||
|
||
# 检查是否到达下一个部分
|
||
elif line.startswith('#') and current_question and current_answer:
|
||
answer_text = '\n'.join(current_answer).strip()
|
||
if answer_text:
|
||
current_question['answer'] = answer_text
|
||
questions.append(current_question)
|
||
current_question = None
|
||
current_answer = []
|
||
in_answer = False
|
||
|
||
# 保存最后一个问题
|
||
if current_question and current_answer:
|
||
answer_text = '\n'.join(current_answer).strip()
|
||
if answer_text:
|
||
current_question['answer'] = answer_text
|
||
questions.append(current_question)
|
||
|
||
return questions
|
||
|
||
def generate_clean_mock():
|
||
"""生成干净的mock文件"""
|
||
|
||
# 读取能源岗位简历数据
|
||
with open("网页未导入数据/能源产业/能源岗位简历.json", 'r', encoding='utf-8') as f:
|
||
energy_jobs = json.load(f)
|
||
|
||
# 按岗位群分组
|
||
groups = {}
|
||
for job in energy_jobs:
|
||
group_name = job.get("简历岗位群", "")
|
||
if group_name:
|
||
if group_name not in groups:
|
||
groups[group_name] = {
|
||
"positions": [],
|
||
"questions": None
|
||
}
|
||
|
||
# 添加岗位信息
|
||
position = {
|
||
"id": f"energy_{len(groups)}_{len(groups[group_name]['positions'])+1}",
|
||
"title": job.get("岗位名称", ""),
|
||
"level": job.get("岗位级别", "基础岗"),
|
||
"avatar": job.get("岗位头像", "https://ddcz-1315997005.cos.ap-nanjing.myqcloud.com/static/img/butler_position_avatar/recuPFYfYv4rBd.jpeg"),
|
||
"department": group_name,
|
||
"type": "全职",
|
||
"experience": "1-3年",
|
||
"education": "大专",
|
||
"salary": "8-15K",
|
||
"location": "北京",
|
||
"updateTime": "2024-01-20",
|
||
"description": f"负责{job.get('岗位名称', '')}相关工作",
|
||
"requirements": []
|
||
}
|
||
groups[group_name]["positions"].append(position)
|
||
|
||
# 提取面试题
|
||
if not groups[group_name]["questions"] and "面试题内容" in job:
|
||
questions = parse_interview_questions(job["面试题内容"])
|
||
# 自动化控制只保留10个问题
|
||
if group_name == "自动化控制" and len(questions) > 10:
|
||
questions = questions[:10]
|
||
groups[group_name]["questions"] = questions
|
||
|
||
# 生成industries数组
|
||
industries = []
|
||
group_id = 1
|
||
for group_name, data in groups.items():
|
||
industry = {
|
||
"id": f"energy_{group_id}",
|
||
"name": group_name,
|
||
"positions": data["positions"],
|
||
"questions": [
|
||
{
|
||
"id": f"group_q{group_id}",
|
||
"question": f"# {group_name}面试题",
|
||
"subQuestions": data["questions"] if data["questions"] else []
|
||
}
|
||
]
|
||
}
|
||
industries.append(industry)
|
||
group_id += 1
|
||
|
||
# 生成完整的mock文件内容
|
||
content = '''// 简历与面试题Mock数据
|
||
|
||
// 岗位群列表
|
||
const industries = %s;
|
||
|
||
export const resumeInterviewService = {
|
||
getIndustries: async () => {
|
||
// 模拟API调用延迟
|
||
await new Promise((resolve) => setTimeout(resolve, 500));
|
||
return industries;
|
||
},
|
||
};
|
||
''' % json.dumps(industries, ensure_ascii=False, indent=2)
|
||
|
||
# 备份当前文件
|
||
mock_file = "src/mocks/resumeInterviewMock.js"
|
||
backup_path = f"{mock_file}.backup_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
||
shutil.copy(mock_file, backup_path)
|
||
print(f"✅ 已备份文件到:{backup_path}")
|
||
|
||
# 写入新文件
|
||
with open(mock_file, 'w', encoding='utf-8') as f:
|
||
f.write(content)
|
||
|
||
print("✅ 成功生成干净的mock文件")
|
||
|
||
# 统计结果
|
||
print("\n📊 各岗位群统计:")
|
||
total_questions = 0
|
||
for industry in industries:
|
||
q_count = len(industry["questions"][0]["subQuestions"]) if industry["questions"] else 0
|
||
total_questions += q_count
|
||
print(f" - {industry['name']}: {len(industry['positions'])}个岗位, {q_count}个面试题")
|
||
|
||
print(f"\n📈 总计:{len(industries)}个岗位群,{total_questions}个面试题")
|
||
|
||
if __name__ == "__main__":
|
||
generate_clean_mock()
|