Files
ALL-teach_sys/frontend_智能制造/analyze_interview_questions.py
KQL 38350dca36 更新12个教务系统并优化项目大小
主要更新:
- 更新所有12个产业的教务系统数据和功能
- 删除所有 node_modules 文件夹(节省3.7GB)
- 删除所有 .yoyo 缓存文件夹(节省1.2GB)
- 删除所有 dist 构建文件(节省55MB)

项目优化:
- 项目大小从 8.1GB 减少到 3.2GB(节省60%空间)
- 保留完整的源代码和配置文件
- .gitignore 已配置,防止再次提交大文件

启动脚本:
- start-industry.sh/bat/ps1 脚本会自动检测并安装依赖
- 首次启动时自动运行 npm install
- 支持单个或批量启动产业系统

🤖 Generated with Claude Code

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-17 14:36:25 +08:00

79 lines
2.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import json
import re
print("=== 分析智能制造岗位简历.json 中的面试题内容 ===\n")
# 读取智能制造岗位简历数据
with open('网页未导入数据/智能制造产业/智能制造岗位简历.json', 'r', encoding='utf-8') as f:
smart_mfg_data = json.load(f)
# 分析每个岗位群的面试题
interview_map = {}
for item in smart_mfg_data:
job_group = item.get('简历岗位群', '')
position = item.get('岗位名称', '')
interview_type = item.get('面试题', '')
interview_content = item.get('面试题内容', '')
if job_group and interview_content:
if job_group not in interview_map:
interview_map[job_group] = {
'type': interview_type,
'positions': [],
'sections': [],
'total_questions': 0
}
interview_map[job_group]['positions'].append(position)
# 解析面试题内容
lines = interview_content.split('\n')
current_section = None
question_count = 0
for line in lines:
line = line.strip()
if not line:
continue
# 大标题(如 # 一、xxx
if line.startswith('# '):
section_title = line[2:].strip()
if section_title and section_title not in interview_map[job_group]['sections']:
interview_map[job_group]['sections'].append(section_title)
current_section = section_title
# 问题编号(如 1. xxx
elif re.match(r'^\d+\.\s+', line):
question_count += 1
interview_map[job_group]['total_questions'] = max(
interview_map[job_group]['total_questions'],
question_count
)
# 打印分析结果
for group, data in sorted(interview_map.items()):
print(f"{group} ({data['type']}):")
print(f" 包含岗位: {', '.join(set(data['positions']))}")
print(f" 面试题章节: {len(data['sections'])}")
for section in data['sections']:
print(f" - {section}")
print(f" 总题目数: {data['total_questions']}\n")
# 检查一个具体例子
print("\n=== 示例PLC类岗位面试题详细内容 ===\n")
for item in smart_mfg_data:
if item.get('简历岗位群') == 'PLC' and item.get('岗位名称') == 'PLC编程工程师':
content = item.get('面试题内容', '')
# 提取所有问题
questions = re.findall(r'(\d+\.\s+[^\n]+)', content)
print(f"找到 {len(questions)} 个问题:")
for i, q in enumerate(questions[:10], 1): # 只显示前10个
print(f" {q[:80]}..." if len(q) > 80 else f" {q}")
if len(questions) > 10:
print(f" ... 还有 {len(questions) - 10} 个问题")
break