Files
ALL-teach_sys/frontend_能源/generate_complete_energy_data.py
KQL cd2e307402 初始化12个产业教务系统项目
主要内容:
- 包含12个产业的完整教务系统前端代码
- 智能启动脚本 (start-industry.sh)
- 可视化产业导航页面 (index.html)
- 项目文档 (README.md)

优化内容:
- 删除所有node_modules和.yoyo文件夹,从7.5GB减少到2.7GB
- 添加.gitignore文件避免上传不必要的文件
- 自动依赖管理和智能启动系统

产业列表:
1. 文旅产业 (5150)
2. 智能制造 (5151)
3. 智能开发 (5152)
4. 财经商贸 (5153)
5. 视觉设计 (5154)
6. 交通物流 (5155)
7. 大健康 (5156)
8. 土木水利 (5157)
9. 食品产业 (5158)
10. 化工产业 (5159)
11. 能源产业 (5160)
12. 环保产业 (5161)

🤖 Generated with Claude Code
Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-24 14:14:14 +08:00

299 lines
10 KiB
Python
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import json
import re
import os
import datetime
import shutil
def parse_interview_questions(content):
"""解析面试题内容"""
questions = []
lines = content.split('\n')
current_question = None
current_answer = []
question_id = 1
in_answer = False
for line in lines:
line = line.strip()
question_match = re.match(r'^(\d+)\.[\s ]+(.+)$', line)
if question_match:
if current_question and current_answer:
answer_text = '\n'.join(current_answer).strip()
if answer_text:
current_question['answer'] = answer_text
questions.append(current_question)
current_answer = []
question_text = question_match.group(2).rstrip('?')
current_question = {
'id': f'q{question_id}',
'question': question_text,
'answer': ''
}
question_id += 1
in_answer = False
elif '示例答案' in line or '答案:' in line or '答案:' in line:
in_answer = True
answer_in_line = re.sub(r'^.*?(示例答案|答案)[:]?\s*', '', line).strip()
if answer_in_line:
current_answer.append(answer_in_line)
elif in_answer and current_question and line:
if not line.startswith('#'):
current_answer.append(line)
elif line.startswith('#') and current_question and current_answer:
answer_text = '\n'.join(current_answer).strip()
if answer_text:
current_question['answer'] = answer_text
questions.append(current_question)
current_question = None
current_answer = []
in_answer = False
if current_question and current_answer:
answer_text = '\n'.join(current_answer).strip()
if answer_text:
current_question['answer'] = answer_text
questions.append(current_question)
return questions
def read_modified_resumes():
"""读取所有修改版简历"""
modified_resumes = {}
folder_path = "网页未导入数据/能源产业/能源修改版简历"
if os.path.exists(folder_path):
for filename in os.listdir(folder_path):
if filename.endswith('.md'):
position_name = filename.replace('.md', '')
file_path = os.path.join(folder_path, filename)
with open(file_path, 'r', encoding='utf-8') as f:
modified_resumes[position_name] = f.read()
return modified_resumes
def generate_complete_energy_data():
"""生成包含修改版的完整能源数据"""
# 读取能源岗位简历数据
with open("网页未导入数据/能源产业/能源岗位简历.json", 'r', encoding='utf-8') as f:
energy_jobs = json.load(f)
# 读取修改版简历
modified_resumes = read_modified_resumes()
print(f"📚 找到 {len(modified_resumes)} 个修改版简历")
# 岗位级别映射
level_mapping = {
"高级": "技术骨干岗",
"中级": "技术骨干岗",
"普通": "普通岗",
"": "普通岗"
}
# 默认头像
default_avatars = [
"https://ddcz-1315997005.cos.ap-nanjing.myqcloud.com/static/img/butler_position_avatar/recuPFYfYv4rBd.jpeg",
"https://ddcz-1315997005.cos.ap-nanjing.myqcloud.com/static/img/butler_position_avatar/recuPFYfYvF54F.jpeg",
"https://ddcz-1315997005.cos.ap-nanjing.myqcloud.com/static/img/butler_position_avatar/recuPFYfYvumAH.jpeg"
]
# 按岗位群分组
groups = {}
for job in energy_jobs:
group_name = job.get("简历岗位群", "")
if group_name:
if group_name not in groups:
groups[group_name] = {
"positions": [],
"questions": None,
"templates": []
}
position_name = job.get("岗位名称", "")
# 添加岗位信息
position = {
"id": f"energy_{len(groups)}_{len(groups[group_name]['positions'])+1}",
"title": position_name,
"level": level_mapping.get(job.get("岗位等级标签", ""), "普通岗"),
"avatar": job.get("简历头像url") or default_avatars[len(groups[group_name]['positions']) % 3],
"department": group_name,
"type": "全职",
"experience": "1-3年",
"education": "大专",
"salary": "8-15K",
"location": "北京",
"updateTime": "2024-01-20",
"description": f"负责{position_name}相关工作",
"requirements": []
}
groups[group_name]["positions"].append(position)
# 准备简历模板内容
original_content = job.get("简历内容", "")
modified_content = ""
# 查找对应的修改版
if position_name in modified_resumes:
modified_content = modified_resumes[position_name]
print(f" ✅ 找到修改版: {position_name}")
elif position_name.replace('PACK', 'pack') in modified_resumes:
modified_content = modified_resumes[position_name.replace('PACK', 'pack')]
print(f" ✅ 找到修改版: {position_name} (大小写)")
elif position_name.replace('pack', 'PACK') in modified_resumes:
modified_content = modified_resumes[position_name.replace('pack', 'PACK')]
print(f" ✅ 找到修改版: {position_name} (大小写)")
# 添加简历模板
template = {
"position": position_name,
"level": level_mapping.get(job.get("岗位等级标签", ""), "普通岗"),
"avatar": job.get("简历头像url") or default_avatars[0],
"content": {
"original": original_content,
"modified": modified_content
},
"studentInfo": {
"project_experience": {
"project_name": "",
"position": "",
"time_period": "XXXXXX",
"company": "XXXXXX",
"description": ""
},
"core_skills": [],
"compound_skills": [],
"personal_summary": ""
}
}
groups[group_name]["templates"].append(template)
# 提取面试题
if not groups[group_name]["questions"] and "面试题内容" in job:
questions = parse_interview_questions(job["面试题内容"])
groups[group_name]["questions"] = questions
# 生成industries数组和resumeTemplates
industries = []
resumeTemplates = {}
group_id = 1
for group_name, data in groups.items():
industry = {
"id": f"energy_{group_id}",
"name": group_name,
"positions": data["positions"],
"questions": [
{
"id": f"group_q{group_id}",
"question": f"# {group_name}面试题",
"subQuestions": data["questions"] if data["questions"] else []
}
]
}
industries.append(industry)
resumeTemplates[group_name] = data["templates"]
group_id += 1
return industries, resumeTemplates
def update_mock_file():
"""更新mock文件"""
mock_file = "src/mocks/resumeInterviewMock.js"
# 备份
backup_path = f"{mock_file}.backup_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}"
shutil.copy(mock_file, backup_path)
print(f"✅ 已备份文件到:{backup_path}")
# 生成新数据
industries, resumeTemplates = generate_complete_energy_data()
# 生成完整内容
content = '''// 简历与面试题Mock数据
// 岗位群列表
const industries = %s;
// 简历模板数据
const resumeTemplates = %s;
// 我的简历数据
const myResume = {
personalInfo: {
name: "王强",
phone: "138****8888",
email: "wangqiang@example.com",
age: 22,
education: "苏州健雄职业技术学院 2020.9-2023.6",
experience: "应届毕业生",
location: "苏州"
},
workExperience: [
{
company: "苏州某智能制造企业",
position: "模具设计与制造实习生",
duration: "2023.03-2023.06",
description: "负责模具设计与制造相关工作"
}
],
skills: ["模具设计", "机械制图", "CAD/CAM", "数控编程"],
projects: []
};
export const resumeInterviewService = {
getIndustries: async () => {
// 模拟API调用延迟
await new Promise((resolve) => setTimeout(resolve, 500));
return industries;
},
};
// 导出合并的数据
export const resumeInterviewMockData = {
industries,
resumeTemplates,
myResume
};
export function getMockPageData() {
return resumeInterviewMockData;
}
export { myResume };
''' % (json.dumps(industries, ensure_ascii=False, indent=2),
json.dumps(resumeTemplates, ensure_ascii=False, indent=2))
# 写入文件
with open(mock_file, 'w', encoding='utf-8') as f:
f.write(content)
print("✅ 成功生成包含修改版的能源产业数据")
# 统计
modified_count = 0
for group_templates in resumeTemplates.values():
for template in group_templates:
if template["content"]["modified"]:
modified_count += 1
print(f"\n📊 数据统计:")
print(f" - 岗位群: {len(industries)}")
print(f" - 总岗位: {sum(len(ind['positions']) for ind in industries)}")
print(f" - 简历模板: {sum(len(templates) for templates in resumeTemplates.values())}")
print(f" - 包含修改版: {modified_count}")
print(f" - 面试题: {sum(len(ind['questions'][0]['subQuestions']) for ind in industries if ind['questions'])}")
if __name__ == "__main__":
update_mock_file()