Files
ALL-teach_sys/frontend_智能制造/update_interview_questions_fixed.py
KQL 38350dca36 更新12个教务系统并优化项目大小
主要更新:
- 更新所有12个产业的教务系统数据和功能
- 删除所有 node_modules 文件夹(节省3.7GB)
- 删除所有 .yoyo 缓存文件夹(节省1.2GB)
- 删除所有 dist 构建文件(节省55MB)

项目优化:
- 项目大小从 8.1GB 减少到 3.2GB(节省60%空间)
- 保留完整的源代码和配置文件
- .gitignore 已配置,防止再次提交大文件

启动脚本:
- start-industry.sh/bat/ps1 脚本会自动检测并安装依赖
- 首次启动时自动运行 npm install
- 支持单个或批量启动产业系统

🤖 Generated with Claude Code

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-17 14:36:25 +08:00

192 lines
6.8 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import json
import re
from datetime import datetime
# 读取智能制造岗位简历数据
print("正在读取智能制造岗位简历.json...")
with open('网页未导入数据/智能制造产业/智能制造岗位简历.json', 'r', encoding='utf-8') as f:
smart_mfg_data = json.load(f)
# 读取当前mock文件
print("正在读取当前mock文件...")
with open('src/mocks/resumeInterviewMock.js', 'r', encoding='utf-8') as f:
mock_content = f.read()
# 备份原文件
backup_time = datetime.now().strftime('%Y%m%d_%H%M%S')
backup_file = f'src/mocks/resumeInterviewMock.js.backup_complete_{backup_time}'
with open(backup_file, 'w', encoding='utf-8') as f:
f.write(mock_content)
print(f"已创建备份文件: {backup_file}")
# 解析智能制造岗位简历数据,构建完整的面试题映射
interview_data_map = {}
for item in smart_mfg_data:
job_group = item.get('简历岗位群', '')
interview_content = item.get('面试题内容', '')
if job_group and interview_content:
# 解析面试题内容
questions_data = []
lines = interview_content.split('\n')
current_section = None
current_section_questions = []
section_id = 1
i = 0
while i < len(lines):
line = lines[i].strip()
if not line:
i += 1
continue
# 大标题(如 # 一、xxx
if line.startswith('# '):
# 保存上一个section
if current_section and current_section_questions:
questions_data.append({
'id': f'group_q{section_id}',
'title': current_section,
'questions': current_section_questions
})
section_id += 1
current_section = line[2:].strip()
current_section_questions = []
# 问题编号(如 1. xxx 或 1、xxx
elif re.match(r'^(\d+)[\.、]\s+', line):
# 提取问题
question_match = re.match(r'^(\d+)[\.、]\s+(.+)', line)
if question_match:
question_text = question_match.group(2).strip()
# 查找答案
answer_lines = []
i += 1 # 移动到下一行
# 继续读取直到找到答案或下一个问题
while i < len(lines):
next_line = lines[i].strip()
# 如果遇到下一个问题或章节,停止
if next_line.startswith('#') or re.match(r'^(\d+)[\.、]\s+', next_line):
i -= 1 # 回退一行,让外层循环处理
break
# 如果是答案标记
if re.match(r'^(示例答案|答案)[:]?\s*', next_line):
# 提取答案内容
answer_text = re.sub(r'^(示例答案|答案)[:]?\s*', '', next_line)
if answer_text:
answer_lines.append(answer_text)
elif next_line:
# 其他非空行也作为答案的一部分
answer_lines.append(next_line)
i += 1
answer = ' '.join(answer_lines).strip()
if not answer:
answer = "请根据实际情况回答"
current_section_questions.append({
'question': question_text,
'answer': answer
})
continue
i += 1
# 保存最后一个section
if current_section and current_section_questions:
questions_data.append({
'id': f'group_q{section_id}',
'title': current_section,
'questions': current_section_questions
})
interview_data_map[job_group] = questions_data
print(f"\n共解析 {len(interview_data_map)} 个岗位群的面试题数据")
# 统计解析结果
for group, data in interview_data_map.items():
total_questions = sum(len(section['questions']) for section in data)
print(f" - {group}: {len(data)} 个章节,{total_questions} 道题")
# 更新mock文件中的面试题
def update_industry_questions(match):
full_match = match.group(0)
industry_name = match.group(1)
# 查找对应的面试题数据
if industry_name not in interview_data_map:
print(f" - {industry_name}: 保持原样(未找到对应数据)")
return full_match
questions_data = interview_data_map[industry_name]
# 构建新的questions数组
new_questions = []
for section_data in questions_data:
sub_questions = []
for idx, q in enumerate(section_data['questions']):
# 转义特殊字符
question_text = q['question'].replace('\\', '\\\\').replace('"', '\\"')
answer_text = q['answer'].replace('\\', '\\\\').replace('"', '\\"').replace('\n', '\\n')
sub_questions.append(f'''{{
"id": "q{section_data['id'][7:]}_{idx+1}",
"question": "{question_text}",
"answer": "{answer_text}"
}}''')
section_title = section_data['title'].replace('\\', '\\\\').replace('"', '\\"')
new_questions.append(f'''{{
"id": "{section_data['id']}",
"question": "# {section_title}",
"subQuestions": [
{','.join(sub_questions)}
]
}}''')
# 替换questions部分
questions_str = ',\n '.join(new_questions)
# 构建完整的替换内容
before_questions = match.group(0).split('"questions": [')[0]
result = before_questions + '"questions": [\n ' + questions_str + '\n ]'
# 统计题目数量
total_questions = sum(len(section['questions']) for section in questions_data)
print(f" - {industry_name}: 更新为 {len(questions_data)} 个章节,{total_questions} 道题")
return result
# 执行更新
print("\n正在更新面试题数据...")
pattern = r'"name":\s*"([^"]+)"[^}]*?"questions":\s*\[.*?\]\s*(?=\})'
new_content = re.sub(pattern, update_industry_questions, mock_content, flags=re.DOTALL)
# 保存更新后的文件
with open('src/mocks/resumeInterviewMock.js', 'w', encoding='utf-8') as f:
f.write(new_content)
print("\n✅ 面试题数据更新完成!")
# 验证语法
import subprocess
result = subprocess.run(['node', '-c', 'src/mocks/resumeInterviewMock.js'],
capture_output=True, text=True)
if result.returncode == 0:
print("✅ 语法检查通过!")
else:
print("❌ 语法错误:")
print(result.stderr)