Files
ALL-teach_sys/frontend_化工/add_complete_interview_questions.py
KQL cd2e307402 初始化12个产业教务系统项目
主要内容:
- 包含12个产业的完整教务系统前端代码
- 智能启动脚本 (start-industry.sh)
- 可视化产业导航页面 (index.html)
- 项目文档 (README.md)

优化内容:
- 删除所有node_modules和.yoyo文件夹,从7.5GB减少到2.7GB
- 添加.gitignore文件避免上传不必要的文件
- 自动依赖管理和智能启动系统

产业列表:
1. 文旅产业 (5150)
2. 智能制造 (5151)
3. 智能开发 (5152)
4. 财经商贸 (5153)
5. 视觉设计 (5154)
6. 交通物流 (5155)
7. 大健康 (5156)
8. 土木水利 (5157)
9. 食品产业 (5158)
10. 化工产业 (5159)
11. 能源产业 (5160)
12. 环保产业 (5161)

🤖 Generated with Claude Code
Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-24 14:14:14 +08:00

206 lines
7.4 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import json
import re
from datetime import datetime
def create_backup(file_path):
"""创建备份文件"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
backup_path = f"{file_path}.backup_complete_{timestamp}"
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
with open(backup_path, 'w', encoding='utf-8') as f:
f.write(content)
print(f"已创建备份: {backup_path}")
return backup_path
def load_chemical_data():
"""加载化工岗位简历数据"""
with open('网页未导入数据/化工产业/化工岗位简历.json', 'r', encoding='utf-8') as f:
return json.load(f)
def parse_interview_questions(content):
"""解析面试题内容,提取问题和答案"""
questions = []
if not content:
return questions
# 提取模拟问答题
if "模拟问答题" in content:
# 分割问题部分
sim_section = content.split("# 二、")[0] if "# 二、" in content else content
# 查找每个问题
pattern = r'(\d+)\.\s*([^?]+[?])'
matches = re.findall(pattern, sim_section)
for i, (num, question) in enumerate(matches[:3]): # 取前3个
# 查找对应的示例答案
answer_pattern = rf'{num}\.[^示]*示例答案[:]\s*([^。;!?\n]+[。;!?])'
answer_match = re.search(answer_pattern, sim_section)
if answer_match:
answer = answer_match.group(1).strip()[:150] # 限制长度
else:
answer = "请参考专业培训资料获取详细解答。"
questions.append({
"id": f"q{i+1}",
"question": question.strip(),
"answer": answer
})
# 提取选择题
if "选择题" in content and len(questions) < 5:
choice_section = content.split("# 二、选择题")[1] if "# 二、选择题" in content else ""
if choice_section:
# 查找选择题
choice_pattern = r'(\d+)\.\s*([^?]+[^?\n]*[?])'
choice_matches = re.findall(choice_pattern, choice_section)
for i, (num, question) in enumerate(choice_matches[:2]): # 取前2个
# 查找答案
answer_pattern = rf'正确[答案选项][:]\s*([A-D,、\s]+)'
answer_match = re.search(answer_pattern, choice_section[choice_section.find(question):])
if answer_match:
answer = f"正确答案:{answer_match.group(1).strip()}"
else:
answer = "请查看答案解析"
questions.append({
"id": f"choice{i+1}",
"question": question.strip()[:100],
"answer": answer
})
# 如果没有找到题目,创建默认题目
if not questions:
questions = [
{
"id": "default1",
"question": "请介绍一下你对该岗位的理解和认识",
"answer": "需要掌握专业知识,注重安全生产,不断学习提升。"
},
{
"id": "default2",
"question": "你为什么选择化工行业",
"answer": "化工行业是国民经济的重要支柱,发展前景广阔。"
}
]
return questions
def update_interview_questions():
"""更新面试题数据"""
mock_file = 'src/mocks/resumeInterviewMock.js'
# 创建备份
backup_path = create_backup(mock_file)
# 加载化工数据
chemical_data = load_chemical_data()
# 按岗位群整理面试题
questions_by_group = {}
for item in chemical_data:
group = item.get('简历岗位群', '')
if group and group not in questions_by_group:
content = item.get('面试题内容', '')
questions = parse_interview_questions(content)
if questions:
questions_by_group[group] = questions
print(f"✓ 为 {group} 解析了 {len(questions)} 个面试题")
# 读取mock文件
with open(mock_file, 'r', encoding='utf-8') as f:
lines = f.readlines()
# 逐行处理更新subQuestions
new_lines = []
i = 0
while i < len(lines):
line = lines[i]
new_lines.append(line)
# 查找 "subQuestions": []
if '"subQuestions": []' in line or '"subQuestions": [' in line:
# 查找对应的岗位群
group_name = None
for j in range(max(0, i-15), i):
if '"name":' in lines[j]:
match = re.search(r'"name":\s*"([^"]+)"', lines[j])
if match:
group_name = match.group(1)
break
if group_name and group_name in questions_by_group:
# 如果是空数组,替换为有内容的数组
if '[]' in line:
questions = questions_by_group[group_name]
# 生成格式化的JSON
questions_json = json.dumps(questions, ensure_ascii=False, indent=10)
lines_json = questions_json.split('\n')
# 替换当前行
new_lines[-1] = line.replace('[]', '[\n')
# 添加问题数据
for json_line in lines_json[1:-1]: # 跳过首尾的[]
new_lines.append(' ' + json_line + '\n')
new_lines.append(' ]\n')
print(f" 已更新 {group_name} 的面试题")
else:
# 如果已经有内容,跳过到结束
bracket_count = 1
i += 1
while i < len(lines) and bracket_count > 0:
if '[' in lines[i]:
bracket_count += lines[i].count('[')
if ']' in lines[i]:
bracket_count -= lines[i].count(']')
new_lines.append(lines[i])
if bracket_count == 0:
break
i += 1
i += 1
# 写回文件
with open(mock_file, 'w', encoding='utf-8') as f:
f.writelines(new_lines)
print("\n检查语法...")
# 验证语法
import subprocess
result = subprocess.run(['node', '-c', mock_file], capture_output=True, text=True)
if result.returncode == 0:
print("✓ 语法检查通过")
return True
else:
print("✗ 语法检查失败:")
print(result.stderr[:300])
# 恢复备份
with open(backup_path, 'r', encoding='utf-8') as f:
backup_content = f.read()
with open(mock_file, 'w', encoding='utf-8') as f:
f.write(backup_content)
print("已恢复备份文件")
return False
def main():
"""主函数"""
print("开始添加完整的面试题数据...\n")
if update_interview_questions():
print("\n✅ 面试题数据添加成功!")
else:
print("\n❌ 面试题数据添加失败")
if __name__ == "__main__":
main()