主要内容: - 包含12个产业的完整教务系统前端代码 - 智能启动脚本 (start-industry.sh) - 可视化产业导航页面 (index.html) - 项目文档 (README.md) 优化内容: - 删除所有node_modules和.yoyo文件夹,从7.5GB减少到2.7GB - 添加.gitignore文件避免上传不必要的文件 - 自动依赖管理和智能启动系统 产业列表: 1. 文旅产业 (5150) 2. 智能制造 (5151) 3. 智能开发 (5152) 4. 财经商贸 (5153) 5. 视觉设计 (5154) 6. 交通物流 (5155) 7. 大健康 (5156) 8. 土木水利 (5157) 9. 食品产业 (5158) 10. 化工产业 (5159) 11. 能源产业 (5160) 12. 环保产业 (5161) 🤖 Generated with Claude Code Co-Authored-By: Claude <noreply@anthropic.com>
101 lines
3.4 KiB
Python
101 lines
3.4 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import json
|
|
from datetime import datetime
|
|
|
|
# 读取岗位等级数据
|
|
def load_job_levels():
|
|
with open('网页未导入数据/文旅产业/岗位等级.json', 'r', encoding='utf-8') as f:
|
|
data = json.load(f)
|
|
|
|
# 创建岗位名称到等级的映射
|
|
job_levels_map = {}
|
|
for item in data:
|
|
job_name = item['❌岗位名称']
|
|
level = item['前端查询名称']
|
|
job_levels_map[job_name] = level
|
|
|
|
return job_levels_map
|
|
|
|
# 读取当前的joblevel.json
|
|
def load_current_joblevel():
|
|
with open('src/data/joblevel.json', 'r', encoding='utf-8') as f:
|
|
return json.load(f)
|
|
|
|
# 重新整理joblevel.json
|
|
def reorganize_joblevel():
|
|
# 备份原文件
|
|
backup_path = f'src/data/joblevel.json.backup_{datetime.now().strftime("%Y%m%d_%H%M%S")}'
|
|
with open('src/data/joblevel.json', 'r', encoding='utf-8') as f:
|
|
original_data = json.load(f)
|
|
with open(backup_path, 'w', encoding='utf-8') as f:
|
|
json.dump(original_data, f, ensure_ascii=False, indent=4)
|
|
print(f"已备份: {backup_path}")
|
|
|
|
# 加载岗位等级映射
|
|
job_levels_map = load_job_levels()
|
|
|
|
# 收集所有岗位信息
|
|
all_positions = []
|
|
for level_key, level_data in original_data['data'].items():
|
|
for position in level_data['list']:
|
|
all_positions.append(position)
|
|
|
|
# 按新的等级重新分组
|
|
new_data = {
|
|
"code": 200,
|
|
"message": "操作成功",
|
|
"data": {
|
|
"high": {
|
|
"name": "储备干部岗",
|
|
"list": []
|
|
},
|
|
"middle": {
|
|
"name": "技术骨干岗",
|
|
"list": []
|
|
},
|
|
"ordinary": {
|
|
"name": "普通岗",
|
|
"list": []
|
|
}
|
|
}
|
|
}
|
|
|
|
# 分配岗位到正确的等级
|
|
unmatched_positions = []
|
|
for position in all_positions:
|
|
position_name = position['position_name']
|
|
if position_name in job_levels_map:
|
|
level = job_levels_map[position_name]
|
|
if level == "储备干部岗":
|
|
new_data['data']['high']['list'].append(position)
|
|
elif level == "技术骨干岗":
|
|
new_data['data']['middle']['list'].append(position)
|
|
elif level == "普通岗":
|
|
new_data['data']['ordinary']['list'].append(position)
|
|
print(f"分配: {position_name} -> {level}")
|
|
else:
|
|
# 对于未匹配的岗位,保持原有等级或默认为普通岗
|
|
unmatched_positions.append(position)
|
|
print(f"未找到匹配: {position_name}")
|
|
|
|
# 将未匹配的岗位添加到普通岗
|
|
for position in unmatched_positions:
|
|
new_data['data']['ordinary']['list'].append(position)
|
|
print(f"默认分配到普通岗: {position['position_name']}")
|
|
|
|
# 写回文件
|
|
with open('src/data/joblevel.json', 'w', encoding='utf-8') as f:
|
|
json.dump(new_data, f, ensure_ascii=False, indent=4)
|
|
|
|
# 统计结果
|
|
print("\n" + "=" * 50)
|
|
print("重新整理完成!")
|
|
print(f"储备干部岗: {len(new_data['data']['high']['list'])} 个岗位")
|
|
print(f"技术骨干岗: {len(new_data['data']['middle']['list'])} 个岗位")
|
|
print(f"普通岗: {len(new_data['data']['ordinary']['list'])} 个岗位")
|
|
print("=" * 50)
|
|
|
|
if __name__ == "__main__":
|
|
reorganize_joblevel() |