#!/usr/bin/env python3 # -*- coding: utf-8 -*- import json import random from datetime import datetime, timedelta def expand_logistics_jobs(): """扩展交通物流岗位数据,增加更多岗位""" # 读取现有的岗位数据 with open('src/data/companyJobsNew.json', 'r', encoding='utf-8') as f: existing_jobs = json.load(f) # 额外的交通物流岗位列表 additional_positions = [ "供应链分析师", "仓库主管", "货运代理", "物流规划师", "报关员", "调度员", "配送主管", "冷链物流专员", "跨境电商物流专员", "智慧物流工程师", "运输经理", "物流成本分析师", "供应链优化专员", "货运司机", "仓储主管", "物流信息系统管理员", "国际物流专员", "快递网点经理", "物流客服主管", "供应链培训师" ] # 公司列表 logistics_companies = [ "顺丰控股", "京东物流", "中通快递", "圆通速递", "申通快递", "德邦物流", "百世物流", "韵达速递", "中外运", "招商局物流", "菜鸟网络", "苏宁物流", "邮政速递", "极兔速递", "跨越速运" ] # 工作地点 locations = ["上海", "北京", "深圳", "广州", "杭州", "南京", "苏州", "成都", "武汉", "西安", "天津", "重庆"] # 标签库 all_tags = ["物流管理", "供应链", "仓储", "运输", "智能设备", "数据分析", "销售", "技术支持", "客户服务", "项目管理", "成本控制", "国际物流"] def generate_job_description(position): """生成职位描述""" base_desc = "负责" if "分析" in position: return base_desc + "物流数据分析和优化工作,提供决策支持,提升物流运营效率。" elif "主管" in position or "经理" in position: return base_desc + "团队管理和业务运营,确保物流服务质量和效率。" elif "专员" in position: return base_desc + "相关业务的执行和协调工作,保障物流流程顺畅运行。" elif "工程师" in position: return base_desc + "物流技术系统的开发、维护和优化工作。" else: return base_desc + "物流相关业务的日常运营和管理工作。" def get_salary_range(position): """根据岗位生成薪资范围""" if "经理" in position or "主管" in position: return random.choice(["15K-25K", "18K-28K", "20K-35K"]) elif "工程师" in position or "分析师" in position: return random.choice(["12K-20K", "15K-25K", "18K-30K"]) elif "专员" in position: return random.choice(["8K-12K", "10K-15K", "12K-18K"]) else: return random.choice(["6K-10K", "8K-12K", "10K-14K"]) # 生成额外的岗位数据 new_jobs = [] # 生成未来3个月内的截止日期 base_date = datetime(2025, 1, 1) for i, position in enumerate(additional_positions): # 随机生成截止日期(1-90天后) days_offset = random.randint(30, 120) deadline = base_date + timedelta(days=days_offset) deadline_str = deadline.strftime("%Y/%-m/%-d") job_data = { "内推岗位名称": position, "岗位相关标签": "专业相关岗位", "岗位标签": random.choice(["就业", "实习"]), "薪资": get_salary_range(position), "工作地点": random.choice(locations), "学历要求": random.choice(["本科", "大专及以上", "本科及以上", "硕士及以上"]), "招聘人数": str(random.randint(1, 10)), "截止时间": deadline_str, "职位标签": random.sample(all_tags, random.randint(3, 5)), "福利标签": ["五险一金", "带薪年假", "节日福利", "员工旅游", "培训机会", "弹性工作"], "职位描述": generate_job_description(position), "任职要求": f"1. {random.choice(['物流管理', '交通运输', '供应链管理', '工业工程', '信息管理'])}等相关专业;\n2. 具备良好的沟通协调能力和团队合作精神;\n3. 熟悉物流行业运作流程;\n4. 有相关实习或工作经验者优先。", "公司介绍": f"{random.choice(logistics_companies)}是国内领先的物流企业,致力于为客户提供高效、智能、可靠的物流解决方案,业务覆盖全国。" } new_jobs.append(job_data) # 合并现有岗位和新岗位 all_jobs = existing_jobs + new_jobs # 写入更新后的岗位数据 with open('src/data/companyJobsNew.json', 'w', encoding='utf-8') as f: json.dump(all_jobs, f, ensure_ascii=False, indent=2) print(f"已扩展岗位数据:") print(f"- 原有岗位: {len(existing_jobs)} 个") print(f"- 新增岗位: {len(new_jobs)} 个") print(f"- 总计岗位: {len(all_jobs)} 个") # 显示新增的前5个岗位 print("\n新增岗位示例:") for i, job in enumerate(new_jobs[:5], 1): print(f"{i}. {job['内推岗位名称']}: {job['薪资']} - {job['工作地点']} ({job['岗位标签']})") if __name__ == "__main__": expand_logistics_jobs()