更新12个教务系统并优化项目大小

主要更新:
- 更新所有12个产业的教务系统数据和功能
- 删除所有 node_modules 文件夹(节省3.7GB)
- 删除所有 .yoyo 缓存文件夹(节省1.2GB)
- 删除所有 dist 构建文件(节省55MB)

项目优化:
- 项目大小从 8.1GB 减少到 3.2GB(节省60%空间)
- 保留完整的源代码和配置文件
- .gitignore 已配置,防止再次提交大文件

启动脚本:
- start-industry.sh/bat/ps1 脚本会自动检测并安装依赖
- 首次启动时自动运行 npm install
- 支持单个或批量启动产业系统

🤖 Generated with Claude Code

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
KQL
2025-10-17 14:36:25 +08:00
parent 60921dbfb9
commit 38350dca36
792 changed files with 470498 additions and 11589 deletions

View File

@@ -1,226 +1,139 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import json
import os
import re
from datetime import datetime
# 读取视觉设计岗位简历.json文件
json_file = '网页未导入数据/视觉设计产业/视觉设计岗位简历.json'
mock_file = 'src/mocks/resumeInterviewMock.js'
def load_visual_design_data():
"""加载视觉设计岗位简历数据"""
with open('网页未导入数据/视觉设计产业/视觉设计岗位简历.json', 'r', encoding='utf-8') as f:
return json.load(f)
print("正在读取完整的面试题数据...")
with open(json_file, 'r', encoding='utf-8') as f:
positions_data = json.load(f)
def extract_first_5_questions(content):
"""从面试题内容中提取前5个问题和答案"""
questions = []
# 创建岗位名称到面试题的映射
interview_questions_map = {}
for position in positions_data:
position_name = position.get("岗位名称", "")
interview_content = position.get("面试题内容", "")
if position_name and interview_content:
# 解析markdown格式的面试题
questions = []
lines = interview_content.split('\n')
current_section = ""
current_question = None
# 提取所有问题
pattern = r'(\d+)\.\s*问题[:]?\s*(.*?)(?:\n\s*)?(?:参考回答[:]?)(.*?)(?=\d+\.\s*问题|$)'
matches = re.findall(pattern, content, re.DOTALL)
for line in lines:
line = line.strip()
if line.startswith('# '):
# 新的大分类
current_section = line[2:].strip()
elif line and line[0].isdigit() and '. 问题' in line:
# 保存上一个问题
if current_question:
questions.append(current_question)
for i, match in enumerate(matches[:5], 1): # 只取前5个
q_num = match[0]
question_text = match[1].strip()
answer_text = match[2].strip()
# 提取问题文本
parts = line.split('问题:', 1)
if len(parts) > 1:
question_text = parts[1].strip()
else:
parts = line.split('问题:', 1)
if len(parts) > 1:
question_text = parts[1].strip()
else:
question_text = line
questions.append({
"num": i,
"question": question_text,
"answer": answer_text
})
current_question = {
"question": question_text,
"answer": "",
"section": current_section
}
elif line.startswith('答案:') or line.startswith('答案:'):
if current_question:
answer = line.replace('答案:', '').replace('答案:', '').strip()
current_question["answer"] = answer
elif current_question and line and not line.startswith('#') and not (line[0].isdigit() and '. 问题' in line):
# 继续添加到答案中(多行答案)
if current_question["answer"] and not line.startswith('---'):
current_question["answer"] += " " + line
return questions
# 添加最后一个问题
if current_question:
questions.append(current_question)
def main():
print("=== 简单更新面试题内容 ===\n")
interview_questions_map[position_name] = questions
if questions:
print(f"解析 {position_name} 的面试题,共 {len(questions)} 个问题")
# 创建备份
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
backup_name = f'src/mocks/resumeInterviewMock.js.backup_{timestamp}_simple'
print(f"\n总共找到 {len(interview_questions_map)} 个岗位的面试题")
with open('src/mocks/resumeInterviewMock.js', 'r', encoding='utf-8') as f:
mock_content = f.read()
# 读取resumeInterviewMock.js文件
print("\n正在读取 resumeInterviewMock.js...")
with open(mock_file, 'r', encoding='utf-8') as f:
content = f.read()
with open(backup_name, 'w', encoding='utf-8') as f:
f.write(mock_content)
print(f"✓ 已创建备份: {backup_name}\n")
# 创建备份
backup_file = f"{mock_file}.backup_simple_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
with open(backup_file, 'w', encoding='utf-8') as f:
f.write(content)
print(f"已创建备份文件: {backup_file}")
# 加载视觉设计数据
visual_data = load_visual_design_data()
# 为每个产业创建面试题数据
def create_industry_questions(position_name, questions):
"""为特定岗位创建面试题数组"""
# 按section分组
sections = {}
for q in questions:
section = q.get('section', '通用问题')
if section not in sections:
sections[section] = []
sections[section].append(q)
# 岗位映射
position_map = {
"UI设计师": "UI设计",
"包装设计师": "包装设计",
"插画师": "插画设计",
"影视灯光": "灯光",
"动画师": "动画设计",
"平面设计师": "平面设计",
"品牌视觉内容策划": "品牌设计",
"CG总监助理": "三维设计",
"特效设计师": "后期特效",
"剪辑师": "剪辑",
"调色师": "调色",
"录音师": "音频处理",
"直播专员": "直播",
"新媒体运营专员": "新媒体运营",
"文案策划": "影视节目策划",
"室内设计师": "室内设计"
}
# 创建questions数组
result = []
updated_count = 0
for section_name, section_questions in sections.items():
if section_questions:
# 创建分组
group = {
"id": f"group_q{len(result)+1}",
"question": f"# {section_name}" if section_name else "# 面试题",
"subQuestions": []
}
# 对每个岗位进行更新
for item in visual_data:
position_name = item.get('岗位名称')
interview_content = item.get('面试题内容')
for idx, q in enumerate(section_questions):
sub_q = {
"id": f"q{len(result)+1}_{idx+1}",
"question": q["question"],
"answer": q["answer"] if q["answer"] else "请根据实际情况回答。"
}
group["subQuestions"].append(sub_q)
if not position_name or not interview_content:
continue
if group["subQuestions"]: # 只添加有内容的分组
result.append(group)
if position_name not in position_map:
continue
return result
industry_name = position_map[position_name]
questions = extract_first_5_questions(interview_content)
# 定义产业和岗位的映射关系
industry_positions_map = {
"UI设计": ["UI设计师"],
"包装设计": ["包装设计师"],
"插画设计": ["插画师"],
"灯光": ["影视灯光"],
"动画设计": ["动画师", "角色原画师", "分镜设计师"],
"后期特效": ["特效设计师", "3D特效师", "特效合成师", "CG总监助理"],
"剪辑": ["剪辑师", "影视剪辑", "短视频剪辑师"],
"品牌设计": ["品牌视觉内容策划", "LOGO设计师", "品牌视觉传播策划管培生"],
"平面设计": ["平面设计师", "AIGC设计师", "AI绘画师"],
"三维设计": ["3D建模师", "渲染合成师", "材质灯光师", "游戏场景地编", "游戏场景生态设计师助理", "潮玩设计师"],
"摄影/摄像": ["摄影师", "影视摄像", "摄影美术指导助理"],
"室内设计": ["室内设计师", "美术总监助理"],
"调色": ["调色师"],
"新媒体运营": ["新媒体运营专员", "自媒体运营专员"],
"音频处理": ["音效设计师", "音频编辑师", "混音师", "录音师"],
"影视节目策划": ["导演", "文案策划"],
"直播": ["社群运营", "直播助理", "直播运营", "直播专员"]
}
if not questions:
continue
# 手动为每个产业更新questions
print("\n开始更新面试题数据...")
update_count = 0
print(f"处理 {industry_name} ({position_name}):")
# 读取文件行
lines = content.split('\n')
new_lines = []
i = 0
# 逐个替换前5个问题的内容
for q in questions:
q_id = f"q1_{q['num']}"
while i < len(lines):
line = lines[i]
new_lines.append(line)
# 转义特殊字符
question_escaped = q['question'].replace('\\', '\\\\').replace('"', '\\"')
answer_escaped = q['answer'].replace('\\', '\\\\').replace('"', '\\"')
# 检查是否是产业名称行
for industry_name, position_names in industry_positions_map.items():
if f'"name": "{industry_name}"' in line:
# 找到产业查找其questions字段
j = i + 1
while j < len(lines) and '"questions":' not in lines[j]:
new_lines.append(lines[j])
j += 1
# 查找并替换该问题
pattern = rf'("id":\s*"{q_id}".*?"question":\s*)"[^"]*"(.*?"answer":\s*)"[^"]*"'
replacement = rf'\1"{question_escaped}"\2"{answer_escaped}"'
if j < len(lines) and '"questions":' in lines[j]:
# 找到questions行
new_lines.append(lines[j]) # 添加 "questions": [
new_content = re.sub(pattern, replacement, mock_content, count=1, flags=re.DOTALL)
# 跳过旧的questions内容直到找到对应的结束 ]
bracket_count = 1
j += 1
while j < len(lines) and bracket_count > 0:
if '[' in lines[j]:
bracket_count += lines[j].count('[') - lines[j].count(']')
elif ']' in lines[j]:
bracket_count -= lines[j].count(']')
j += 1
if new_content != mock_content:
mock_content = new_content
print(f" ✓ 更新问题 {q_id}")
else:
print(f" ✗ 未能更新问题 {q_id}")
# 现在j指向 ] 的下一行
# 插入新的面试题数据
for position_name in position_names:
if position_name in interview_questions_map:
questions = interview_questions_map[position_name]
if questions:
questions_data = create_industry_questions(position_name, questions)
# 生成JSON字符串带缩进
questions_str = json.dumps(questions_data, ensure_ascii=False, indent=6)[1:-1] # 去掉外层的[]
# 添加正确缩进
indented_questions = '\n'.join([' ' + line for line in questions_str.split('\n')])
new_lines.append(indented_questions)
new_lines.append(' ]')
update_count += 1
print(f"✓ 已更新 {industry_name} 产业的面试题({len(questions)} 个问题)")
# 更新i到j的位置跳过旧的questions内容
i = j - 1
break
else:
# 如果没有找到对应的面试题,保持原样
continue
break
i += 1
updated_count += 1
# 如果没有更新任何产业,使用原内容
if update_count == 0:
print("未能更新任何产业,保持原文件不变")
else:
# 写回文件
print(f"\n正在写入更新后的内容...")
new_content = '\n'.join(new_lines)
with open(mock_file, 'w', encoding='utf-8') as f:
f.write(new_content)
# 保存文件
with open('src/mocks/resumeInterviewMock.js', 'w', encoding='utf-8') as f:
f.write(mock_content)
print(f"\n更新完成!")
print(f"成功更新: {update_count} 个产业的面试题")
print(f"\n更新完成!处理了{updated_count}个岗位")
# 验证语法
print("\n验证文件语法...")
result = os.popen(f'node -c {mock_file} 2>&1').read()
if result:
print(f"❌ 语法错误: {result}")
# 恢复备份
print("正在恢复备份...")
with open(backup_file, 'r', encoding='utf-8') as f:
content = f.read()
with open(mock_file, 'w', encoding='utf-8') as f:
f.write(content)
print("已恢复备份文件")
else:
print("✓ 语法验证通过")
print("\n面试题更新成功!现在每个产业都有完整的面试题数据。")
import subprocess
try:
result = subprocess.run(['node', '-c', 'src/mocks/resumeInterviewMock.js'],
capture_output=True, text=True)
if result.returncode == 0:
print("✅ 文件语法验证通过")
else:
print(f"❌ 语法错误:\n{result.stderr}")
print("\n恢复备份...")
with open(backup_name, 'r', encoding='utf-8') as f:
backup_content = f.read()
with open('src/mocks/resumeInterviewMock.js', 'w', encoding='utf-8') as f:
f.write(backup_content)
print("已恢复备份")
except Exception as e:
print(f"⚠️ 无法验证语法: {str(e)}")
if __name__ == '__main__':
main()