Files
ALL-teach_sys/frontend_食品/extract_food_only_projects.py

82 lines
2.7 KiB
Python
Raw Normal View History

import json
import re
# 读取学生完成的项目数据
with open('网页未导入数据/学生完成的项目.json', 'r', encoding='utf-8') as f:
student_projects = json.load(f)
# 只提取食品产业的项目
food_projects_by_unit = {}
all_food_projects = []
print("正在分析食品产业项目...")
for item in student_projects:
industry = item.get('所属就业管家', '')
unit_name = item.get('单元名称查询', '')
projects = item.get('AI项目名称', [])
# 只处理食品产业的数据
if industry == '食品':
print(f"\n找到食品产业单元: {unit_name}")
# 清理项目名称(去掉序号)
cleaned_projects = []
for project in projects:
if project: # 跳过空项目
cleaned_project = re.sub(r'^\d+\.', '', project).strip()
cleaned_projects.append(cleaned_project)
print(f" - {cleaned_project}")
if cleaned_projects:
food_projects_by_unit[unit_name] = cleaned_projects
for project in cleaned_projects:
all_food_projects.append({
'project': project,
'unit': unit_name,
'industry': industry
})
print(f"\n总共找到 {len(all_food_projects)} 个食品产业项目")
print(f"涉及 {len(food_projects_by_unit)} 个食品产业单元")
# 生成JavaScript代码
js_content = '''// 我的项目库数据 - 食品产业专版
const myProjectsData = [
'''
total_projects = 0
for unit_name, projects in food_projects_by_unit.items():
js_content += f' {{\n'
js_content += f' "unitName": "{unit_name}",\n'
js_content += f' "projects": [\n'
for project in projects:
js_content += f' "{project}",\n'
total_projects += 1
# 移除最后的逗号
js_content = js_content.rstrip(',\n') + '\n'
js_content += f' ]\n'
js_content += f' }},\n'
# 移除最后的逗号并闭合数组
js_content = js_content.rstrip(',\n') + '\n'
js_content += '];'
print(f"\n生成的JavaScript代码")
print(js_content)
# 保存到文件
with open('my_projects_data_food_only.js', 'w', encoding='utf-8') as f:
f.write(js_content)
print(f"\n已保存到 my_projects_data_food_only.js")
# 统计信息
print(f"\n食品产业统计信息:")
print(f" 总单元数: {len(food_projects_by_unit)}")
print(f" 总项目数: {total_projects}")
print(f" 各单元项目数:")
for unit, projects in food_projects_by_unit.items():
print(f" {unit}: {len(projects)} 个项目")
print(f"\n唯一可查看项目: 儿童一周营养配餐食谱编制方案(在营养配餐与健康管理单元中)")