109 lines
5.2 KiB
Python
109 lines
5.2 KiB
Python
|
|
#!/usr/bin/env python3
|
|||
|
|
# -*- coding: utf-8 -*-
|
|||
|
|
|
|||
|
|
import json
|
|||
|
|
import random
|
|||
|
|
from datetime import datetime, timedelta
|
|||
|
|
|
|||
|
|
def expand_logistics_jobs():
|
|||
|
|
"""扩展交通物流岗位数据,增加更多岗位"""
|
|||
|
|
|
|||
|
|
# 读取现有的岗位数据
|
|||
|
|
with open('src/data/companyJobsNew.json', 'r', encoding='utf-8') as f:
|
|||
|
|
existing_jobs = json.load(f)
|
|||
|
|
|
|||
|
|
# 额外的交通物流岗位列表
|
|||
|
|
additional_positions = [
|
|||
|
|
"供应链分析师", "仓库主管", "货运代理", "物流规划师", "报关员",
|
|||
|
|
"调度员", "配送主管", "冷链物流专员", "跨境电商物流专员", "智慧物流工程师",
|
|||
|
|
"运输经理", "物流成本分析师", "供应链优化专员", "货运司机", "仓储主管",
|
|||
|
|
"物流信息系统管理员", "国际物流专员", "快递网点经理", "物流客服主管", "供应链培训师"
|
|||
|
|
]
|
|||
|
|
|
|||
|
|
# 公司列表
|
|||
|
|
logistics_companies = [
|
|||
|
|
"顺丰控股", "京东物流", "中通快递", "圆通速递", "申通快递",
|
|||
|
|
"德邦物流", "百世物流", "韵达速递", "中外运", "招商局物流",
|
|||
|
|
"菜鸟网络", "苏宁物流", "邮政速递", "极兔速递", "跨越速运"
|
|||
|
|
]
|
|||
|
|
|
|||
|
|
# 工作地点
|
|||
|
|
locations = ["上海", "北京", "深圳", "广州", "杭州", "南京", "苏州", "成都", "武汉", "西安", "天津", "重庆"]
|
|||
|
|
|
|||
|
|
# 标签库
|
|||
|
|
all_tags = ["物流管理", "供应链", "仓储", "运输", "智能设备", "数据分析", "销售", "技术支持", "客户服务", "项目管理", "成本控制", "国际物流"]
|
|||
|
|
|
|||
|
|
def generate_job_description(position):
|
|||
|
|
"""生成职位描述"""
|
|||
|
|
base_desc = "负责"
|
|||
|
|
if "分析" in position:
|
|||
|
|
return base_desc + "物流数据分析和优化工作,提供决策支持,提升物流运营效率。"
|
|||
|
|
elif "主管" in position or "经理" in position:
|
|||
|
|
return base_desc + "团队管理和业务运营,确保物流服务质量和效率。"
|
|||
|
|
elif "专员" in position:
|
|||
|
|
return base_desc + "相关业务的执行和协调工作,保障物流流程顺畅运行。"
|
|||
|
|
elif "工程师" in position:
|
|||
|
|
return base_desc + "物流技术系统的开发、维护和优化工作。"
|
|||
|
|
else:
|
|||
|
|
return base_desc + "物流相关业务的日常运营和管理工作。"
|
|||
|
|
|
|||
|
|
def get_salary_range(position):
|
|||
|
|
"""根据岗位生成薪资范围"""
|
|||
|
|
if "经理" in position or "主管" in position:
|
|||
|
|
return random.choice(["15K-25K", "18K-28K", "20K-35K"])
|
|||
|
|
elif "工程师" in position or "分析师" in position:
|
|||
|
|
return random.choice(["12K-20K", "15K-25K", "18K-30K"])
|
|||
|
|
elif "专员" in position:
|
|||
|
|
return random.choice(["8K-12K", "10K-15K", "12K-18K"])
|
|||
|
|
else:
|
|||
|
|
return random.choice(["6K-10K", "8K-12K", "10K-14K"])
|
|||
|
|
|
|||
|
|
# 生成额外的岗位数据
|
|||
|
|
new_jobs = []
|
|||
|
|
|
|||
|
|
# 生成未来3个月内的截止日期
|
|||
|
|
base_date = datetime(2025, 1, 1)
|
|||
|
|
|
|||
|
|
for i, position in enumerate(additional_positions):
|
|||
|
|
# 随机生成截止日期(1-90天后)
|
|||
|
|
days_offset = random.randint(30, 120)
|
|||
|
|
deadline = base_date + timedelta(days=days_offset)
|
|||
|
|
deadline_str = deadline.strftime("%Y/%-m/%-d")
|
|||
|
|
|
|||
|
|
job_data = {
|
|||
|
|
"内推岗位名称": position,
|
|||
|
|
"岗位相关标签": "专业相关岗位",
|
|||
|
|
"岗位标签": random.choice(["就业", "实习"]),
|
|||
|
|
"薪资": get_salary_range(position),
|
|||
|
|
"工作地点": random.choice(locations),
|
|||
|
|
"学历要求": random.choice(["本科", "大专及以上", "本科及以上", "硕士及以上"]),
|
|||
|
|
"招聘人数": str(random.randint(1, 10)),
|
|||
|
|
"截止时间": deadline_str,
|
|||
|
|
"职位标签": random.sample(all_tags, random.randint(3, 5)),
|
|||
|
|
"福利标签": ["五险一金", "带薪年假", "节日福利", "员工旅游", "培训机会", "弹性工作"],
|
|||
|
|
"职位描述": generate_job_description(position),
|
|||
|
|
"任职要求": f"1. {random.choice(['物流管理', '交通运输', '供应链管理', '工业工程', '信息管理'])}等相关专业;\n2. 具备良好的沟通协调能力和团队合作精神;\n3. 熟悉物流行业运作流程;\n4. 有相关实习或工作经验者优先。",
|
|||
|
|
"公司介绍": f"{random.choice(logistics_companies)}是国内领先的物流企业,致力于为客户提供高效、智能、可靠的物流解决方案,业务覆盖全国。"
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
new_jobs.append(job_data)
|
|||
|
|
|
|||
|
|
# 合并现有岗位和新岗位
|
|||
|
|
all_jobs = existing_jobs + new_jobs
|
|||
|
|
|
|||
|
|
# 写入更新后的岗位数据
|
|||
|
|
with open('src/data/companyJobsNew.json', 'w', encoding='utf-8') as f:
|
|||
|
|
json.dump(all_jobs, f, ensure_ascii=False, indent=2)
|
|||
|
|
|
|||
|
|
print(f"已扩展岗位数据:")
|
|||
|
|
print(f"- 原有岗位: {len(existing_jobs)} 个")
|
|||
|
|
print(f"- 新增岗位: {len(new_jobs)} 个")
|
|||
|
|
print(f"- 总计岗位: {len(all_jobs)} 个")
|
|||
|
|
|
|||
|
|
# 显示新增的前5个岗位
|
|||
|
|
print("\n新增岗位示例:")
|
|||
|
|
for i, job in enumerate(new_jobs[:5], 1):
|
|||
|
|
print(f"{i}. {job['内推岗位名称']}: {job['薪资']} - {job['工作地点']} ({job['岗位标签']})")
|
|||
|
|
|
|||
|
|
if __name__ == "__main__":
|
|||
|
|
expand_logistics_jobs()
|